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We investigate the dynamical behavior of the isotropic majority-vote model on a
square lattice using a combination of damage spreading and finite-size scaling
methods. For initial damage D(0) \ 1/2, the dynamical phase diagram exhibits
a chaotic-frozen phase transition at a critical noise parameter qc=0.0818±
0.0002, while for D(0) < 1/2 the damage does not propagate for any value of
the model’s parameter 0 [ q < 1/2. From simulations at qc, we find that the
dynamical critical exponent is z=0.65±0.05.

KEY WORDS: Damage spreading simulation; majority-vote model; nonequi-
librium stationary states; phase transitions, dynamical critical exponent.

1. INTRODUCTION

The damage spreading problem consists in studying the temporal evolution
of two initially different configurations of a given system submitted to the
same dynamics. Damage spreading simulation together with finite-size
scaling theory is a powerful method to study dynamical phase transitions in
both probabilistic and deterministic cellular automata, (1–5) Ising, (6–16) and
Potts (17, 18) models, spin-glasses, (19, 20) and other spin models. For the case of
equilibrium spin systems, the damage spreading has been widely investi-
gated by imposing different initial conditions and using specific dynamic
rules. These studies revealed the resemblance among the damage spreading
and some thermodynamical properties of the system; e.g., the magnetiza-
tion and the transition temperature.



In this paper, we address the issue of damage spreading in the isotropic
majority-vote model. From the analysis of how the damage between two
nonequilibrium stationary configurations submitted to isotropic majority-
vote rules evolves in time, for varying amount of damage sites at the start
time, we obtain the dynamical phase diagram in the whole parameter
space. We also investigate the critical properties of this nonequilibrium
model and obtain estimates for the static exponent b/n and for the dynamic
critical exponent z.

We consider the two-dimensional isotropic majority-vote model (21) on
a square lattice in which each site is occupied by a spin variable si=±1.
At each time step a randomly chosen spin adopts the sign of the majority
of its nearest neighbors with probability p, and the sign of the minority
with probability q=1−p. In other words, the central spin flips with prob-
ability q if it agrees with the majority sign of its neighborhood and flips
with probability p if it does not. Note that, in this model, the new value of
the central spin at time t+1 depends on the values at time t of both the
spin itself and its nearest neighbors.

In terms of the probability q, which is also called the noise parameter,
the flipping probability is defined by

w(si)=
1
2
51−(1−2q) siS 1 C

z

d=1
si+d 26 , (1)

where S(x)=sign(x) for x ] 0, S(0)=0, and the summation is over the z
nearest neighbors of the spin at site i. For the square lattice, the neigh-
borhood of a site consists of its four nearest neighbors. The probability
given by Eq. (1) exhibits ‘‘up-down’’ symmetry, that is, w(si)=w(−si)
under the change of states of the Ising spins in the neighborhood of si.
Moreover, due to the symmetry w(si)=w(−si) as the model’s parameter q
goes into 1−q, we need to consider only the values of q in the interval
between 0 and 0.5.

Previous Monte Carlo simulations (22–24) showed that the majority-vote
model presents a phase transition to a disordered state at a critical value of
the noise parameter, qc, which depends on the lattice topology. Further, the
corresponding critical phenomenon is in the same class of universitily of
the equilibrium Ising model, (25) with critical exponents that depend only on
the lattice dimensionality. Here we perform damage spreading simulations
on the majority-vote model in square lattices of N=L2 sites, for several
values of system sizes ranging from L=10 to L=120, with periodic
boundary conditions. Section 2 describes the computational procedure, in
Section 3 we present our results for the phase diagram and for the dyna-
mical critical exponent. Then, we conclude in Section 4.
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2. METHOD

Given a certain configuration at time t, the configuration at t+1 was
obtained according to the following procedure:

(a) We choose a site at random, site i, and generate a random
number ri uniformly distributed between zero and unity.

(b) If ri is less or equal to w(si), then the chosen spin si is flipped,
otherwise it remains in its state.

(c) The above steps is then repeated N times, such that each spin has
attempted, on the average, one flip and Monte Carlo time is incremented
by one unit.

To study the damage propagation, we start with a random configura-
tion A of spins and leave it evolve in phase space according to the majority-
vote dynamics. Once this configuration reachs a steady state, a second
configuration B is then created with a fraction D(0) of damaged sites, as
compared with those corresponding sites of A. So, we follow the temporal
evolution of both configurations until the damage has been relax. In order
to assure that both systems evolve within the same dynamics, at each
Monte Carlo step (MCS) the same sequence of random numbers is used to
update corresponding spins in both configurations. Elapsed the necessary
time for the relaxation of the damage, we start calculating the Hamming
distance between the configurations, or damage, given by the following
time-average:

D(t)=
1
2N

C
N

i=1
|sAi (t)−s

B
i (t)|. (2)

The above quantity is usually dependent on the system size L=`N, where
N is the total number of spins, on the time of observation t, on the pair of
configurations considered, and on the values of the initial damage D(0)
and of the noise parameter q. The final damage OD(t)P is given by the
average over several samples, that is by averaging D(t) obtained with dif-
ferent pairs of configurations and sequences of random numbers.

3. RESULTS

In the following we present our numerical results of damage spreading
in the isotropic majority-vote model. We simulate square lattices of linear
sizes L=10, 20, 40, 60, 80, 100, 120, and with periodic boundary condi-
tions. Starting stationary configurations of the system (sAi (0)) are obtained
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after 4000 MCS and the updating is done in a random sequence, i.e., at
each step, one of the sites of the lattice is randomly chosen. We then make
a copy (sBi (0)) with a fraction D(0)=M/N of damaged sites. After allow-
ing the damage to relax over a time of 3000 MCS, we measure, over
4000 MCS, its time-average value D(t), given by Eq. (2). For each value of
the noise parameter q and initial damage D(0), this procedure is repeated
for at least 30 different samples (initial configurations A and B) in order to
calculate the mean value OD(t)P.

Figure 1 shows the average damage OD(t)P as a function of the noise
parameter q, obtained from simulations on lattices of size L=40, and for
values of initial damage D(0)=0.60, 0.75, 1.0. The inset shows the corre-
sponding results for the survival probability P(t), defined as the fraction of
samples in which the damage is still propagating at time t. In calculating
the average damage for a given q, L and D(0), only these survival events
contributed to the average process.

The same numerical results are obtained for other values of
D(0) \ 1/2, while for D(0) < 1/2 the damage does not propagate in the

Fig. 1. The average damage OD(t)P as a function of the noise parameter q, obtained from
simulations on lattices of size L=40, and for values of initial damage D(0)=0.60, 0.75, 1.0.
In the inset we plot the corresponding results for the survival probability P(t). We used a total
of t=11000 MCS and 30 samples.
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Fig. 2. The size dependence of qc(L). Data from simulations on square lattices of linear sizes
L=40, 60, 80, 100, 120, and for the case of symmetrical initial damage D(0)=1.0.

entire range of 0 [ q < 1/2. The results presented in Fig. 1 clearly suggests
a dynamical phase transition separating a chaotic phase for q < qc(L),
where the damage spreads and the two configurations remain different, and
a frozen phase for q \ qc(L), where the damage heals and the configura-
tions meet in phase space. We recall that, for a finite system the transition
becomes a cross over and the present estimates for qc(L) correspond to the
values of the noise parameter above which we obtain a vanishing Hamming
distance. For L=40 we obtained the estimate qc(L)=0.0784±0.0003.
Referring to the work of de Oliveira, (22) here we could mention that the
chaotic phase corresponds to the region of nonzero magnetization, while in
the frozen phase the magnetization bahaves as 1/L and vanishes in the
limit LQ..

In order to study the L-dependence of qc(L), we carried out simula-
tions on square lattices of linear sizes L=40, 60, 80, 100, and 120. In Fig. 2
we have plotted log qc(L) as a function of 1/L, for the case of symmetrical
initial damage D(0)=1.0. The data are consistent with the finite-size-
scaling relation

qc(L)=qc(1+bL−1/n), (3)
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where b=O(1) and we have used the exact value n=1 for the static corre-
lation length critical exponent. The best linear fit to the data points yields
b=−0.728±0.008 and the following estimate for the critical noise,

qc=0.0818±0.0002, (4)

which is valid in the limit LQ.. The above value for qc is to be compared
with qc=0.075±0.001 (ref. 22), obtained from Monte Carlo simulations
and finite-size-scaling theory.

To determine the dynamical critical exponent for the majority-vote
model we have performed simulations at the critical noise parameter qc=
0.0818, considering the case of symmetric initial damage, D(0)=1.0, and
for several values of system sizes L. Here we note that, at q=qc, the
damage heals within a relatively short time after it is created, and we shall
denote the creation time as t=0. In Fig. 3 we have plotted the survival
probability, at qc=0.0818, as a function of time. These data were obtained
from averages over 4000, 3000 and 2000 samples for system sizes L=10, 20
and 40, respectively. In Fig. 4 we show the average survival time Ts(qc) as a

Fig. 3. The survival probability as a function of time, at the critical value of the noise
parameter qc=0.0818. These data were obtained from averages over 4000, 3000 and 2000
samples for system sizes L=10, 20 and 40, respectively.
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Fig. 4. log–log plot of the average survival time Ts(qc) as a function of L, for symmetrical
initial damage and L=40, 60, 80, 100, 120.

function of L, calculated for the case of D(0)=1.0, and L=40, 60, 80, 100
and 120. Considering a power-law behavior of the form

Ts(qc) ’ Lz, (5)

we obtain the dynamical critical exponent z=0.65±0.03, as the slope of
the straight line fitted to the data points in a log–log plot as indicated in
Fig. 4.

Figure 5 shows for different values of L, the time dependence of the
average damage, OD(t)P, calculated at the critical value of qc=0.0818 and
considering D(0)=1. The data were obtained from averages over 4000,
3000 and 2000 samples for system sizes L=20, 30 and 40, respectively. In
Fig. 6 we have scaled the data of Fig. 5, assuming the following finite-size
scaling ansatz for OD(t)P

OD(t)P ’ L−aF(t/Lz), (6)
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Fig. 5. The time dependence of the average damage, OD(t)P, calculated at the critical value
of qc=0.0818 and considering D(0)=1. The data were obtained from averages over 4000,
3000 and 2000 samples for system sizes L=20, 30 and 40, respectively.

Fig. 6. Data collapse of the results shown in Fig. 5, using the scaling form given by Eq. (6),
with a=0.125±0.005 and z=0.65±0.05.
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where the exponents a and z are lattice independent, whereas the scaling
function F(x) depends on the scaled variable (t/Lz) only. The data
collapse is obtained with

a=0.125±0.005 and z=0.65±0.05. (7)

The above estimates were obtained by assuming the central value of our
first estimation [see Eq. (5)] for the dynamical critical exponent, i.e.,
z=0.65, and then both exponents a and z were varied until the data for
lattice sizes L=20, 30 and 40 fall on a single smooth curve. The exponent a
is here identified with the ratio b/n: Our simulated result compares well
with previous estimates (22, 23) and with the exact value b/n=1

8 for the two-
dimensional equilibrium Ising model. On the other hand, the present result
for the exponent z is the first estimate for the dynamical critical exponent
of the isotropic majority-vote model, within the context of damage spread-
ing simulation.

4. DISCUSSION AND CONCLUSION

We have considered damage spreading simulation in the isotropic
majority-vote model on square lattices with periodic boundary conditions.
Depending on the value of the noise parameter q, the resulting phase
diagram in the case of initial damage D(0) \ 1/2 presents two phases;
a chaotic phase in which damage spreads for q < qc, and a frozen phase
where damage does not spread for q \ qc. A finite-size scaling analysis
yielded for the critical noise parameter qc=0.0818±0.0002, in the limit
LQ., which is in good agreement with the critical value of qc separating
the regions of nonzero magnetization at low q and vanishing magnetization
for high q. For D(0) < 1/2 the damage does not propagate in the entire
range of 0 [ q < 1/2.

We have also explored finite-size relations for the average survival
time and the damage, to determine, from simulations at q=qc, the dyna-
mical critical exponent z and the ratio b/n. The present estimate of
b/n=0.125±0.005 agrees with other numerical simulations and supports
the symmetry argument of Grinstein et al. (25) according to which the
present studied nonequilibrium majority-vote model and the equilibrium
two-dimensional Ising model are in the same universality class. We
mention that the short-time dynamics of the two-dimensional isotropic
majority-vote model, and other related models with irreversible dynamic
rules having up-down symmetry, has been considered. (26, 27) These works
extended the Grinstein’s argument to include the dynamical exponent
governing the short-time relaxational behavior of the magnetization. (28)
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Within the context of damage spreading simulation however, we should
expect a different picture. In fact, the dynamical exponent for Glauber
dynamics has already been calculated by Wang and Suzuki. (13) They con-
sidered damage spreading (DS), in d=2, and obtained the estimates
z=1.3 with Glauber dynamics and z=2.16 with heat bath dynamics.
Moreover, Manna, (14) using DS with Metropolis dynamics found z=1.2,
in two dimensions. Accordingly, our calculated value of z=0.65±0.05
for the two-dimensional majority-vote model yields additional evidence of
dynamic rules dependent critical exponents. The observation that the
dynamical behavior of model systems, like the Ising model, is strongly
dependent on the dynamics used in DS simulations has been widely
reported in what concerns phase diagram calculations. The present work
and the ones in refs. 13 and 14 show that this is also true for dynamic
exponents.

In summary, we have reported damage spreading simulations on the
2D isotropic majority-vote model. The phase diagram of Fig. 1 shows only
a weak dependence on the initial damage, whereas the dynamical exponent
z determining the power-law growth of the average survival time with
system-size [Eq. (5)], is significantly lower than the related exponents
associated to the dynamics of Metropolis, Glauber and heat-bath, com-
monly employed to simulate the equilibrium Ising model.
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